126 research outputs found

    Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Get PDF
    BACKGROUND: The mechanisms leading to death and functional impairments due to cerebral malaria (CM) are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM) so far. The present study investigates the neuropathological features of murine CM by applying SEM. METHODS: C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. RESULTS: Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. CONCLUSION: The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies

    Antibodies to myelin oligodendrocyte glycoprotein in HIV-1 associated neurocognitive disorder: a cross-sectional cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation and demyelination have been suggested as mechanisms causing HIV-1 associated neurocognitive disorder (HAND). This cross-sectional cohort study explores the potential role of antibodies to myelin oligodendrocyte glycoprotein (MOG), a putative autoantigen in multiple sclerosis, in the pathogenesis of HAND.</p> <p>Methods</p> <p>IgG antibodies against MOG were measured by ELISA in sera and cerebrospinal fluid (CSF) of 65 HIV-positive patients with HAND (n = 14), cerebral opportunistic infections (HIVOI, n = 25), primary HIV infection (HIVM, n = 5) and asymptomatic patients (HIVasy, n = 21). As control group HIV-negative patients with bacterial or viral CNS infections (OIND, n = 18) and other neurological diseases (OND, n = 22) were included. In a subset of HAND patients MOG antibodies were determined before and during antiviral therapy.</p> <p>Results</p> <p>In serum, significantly higher MOG antibody titers were observed in HAND compared to OND patients. In CSF, significantly higher antibody titers were observed in HAND and HIVOI patients compared to HIVasy and OND patients and in OIND compared to OND patients. CSF anti-MOG antibodies showed a high sensitivity and specificity (85.7% and 76.2%) for discriminating patients with active HAND from asymptomatic HIV patients. MOG immunopositive HAND patients performed significantly worse on the HIV dementia scale and showed higher viral load in CSF. In longitudinally studied HAND patients, sustained antibody response was noted despite successful clearance of viral RNA.</p> <p>Conclusions</p> <p>Persistence of MOG antibodies despite viral clearance in a high percentage of HAND patients suggests ongoing neuroinflammation, possibly preventing recovery from HAND.</p

    Apoptosis of the fibrocytes type 1 in the spiral ligament and blood labyrinth barrier disturbance cause hearing impairment in murine cerebral malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimental murine malaria has been shown to result in significant hearing impairment. Microscopic evaluation of the temporal bones of these animals has revealed regular morphology of the cochlea duct. Furthermore, the known vascular pathologic changes being associated with malaria could not be found. Immunohistochemistry for ICAM1 showed a strong marking in the <it>stria vascularis</it>, indicating a disturbance of the endocochlear potential. The aim of this study was to evaluate the role of apoptosis and the disturbance of the blood labyrinth barrier in the murine malaria associated hearing impairment.</p> <p>Methods</p> <p>The temporal bones of seven mice with cerebral malaria-four with hearing impairment, three without hearing impairment-were evaluated with immunohistochemistry for cleaved caspase 3 to detect apoptosis and connexin 26, a gap junction protein being a cornerstone in the endocochlear potassium recirculation. Furthermore five animals with cerebral malaria were treated with Evans blue prior to sacrification to detect disturbances of the blood labyrinth barrier.</p> <p>Results</p> <p>Cleaved caspase 3 could clearly be detected by immunohistochemistry in the fibrocytes of the spiral ligament, more intensively in animals with hearing impairment, less intensively in those without. Apoptosis signal was equally distributed in the spiral ligament as was the connexin 26 gap junction protein. The Evans blue testing revealed a strong signal in the malaria animals and no signal in the healthy control animals.</p> <p>Conclusion</p> <p>Malfunction of the fibrocytes type 1 in the spiral ligament and disruption of the blood labyrinth barrier, resulting in a breakdown of the endocochlear potential, are major causes for hearing impairment in murine cerebral malaria.</p

    Brain temperature regulation in poor-grade subarachnoid hemorrhage patients – A multimodal neuromonitoring study

    Get PDF
    Elevated body temperature (Tcore) is associated with poor outcome after subarachnoid hemorrhage (SAH). Brain temperature (Tbrain) is usually higher than Tcore. However, the implication of this difference (Tdelta) remains unclear. We aimed to study factors associated with higher Tdelta and its association with outcome. We included 46 SAH patients undergoing multimodal neuromonitoring, for a total of 7879 h of averaged data of Tcore, Tbrain, cerebral blood flow, cerebral perfusion pressure, intracranial pressure and cerebral metabolism (CMD). Three-months good functional outcome was defined as modified Rankin Scale ≤2. Tbrain was tightly correlated with Tcore (r = 0.948, p < 0.01), and was higher in 73.7% of neuromonitoring time (Tdelta +0.18°C, IQR −0.01 – 0.37°C). A higher Tdelta was associated with better metabolic state, indicated by lower CMD-glutamate ( p = 0.003) and CMD-lactate ( p < 0.001), and lower risk of mitochondrial dysfunction (MD) (OR = 0.2, p < 0.001). During MD, Tdelta was significantly lower (0°C, IQR −0.2 – 0.1; p < 0.001). A higher Tdelta was associated with improved outcome (OR = 7.7, p = 0.002). Our study suggests that Tbrain is associated with brain metabolic activity and exceeds Tcore when mitochondrial function is preserved. Further studies are needed to understand how Tdelta may serve as a surrogate marker for brain function and predict clinical course and outcome after SAH

    Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study.

    Get PDF
    BACKGROUND: Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS: This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS: In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION: The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies

    Murine malaria is associated with significant hearing impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>malaria has been suspected to cause hearing loss. Developmental, cognitive and language disorders have been observed in children, surviving cerebral malaria. This prospective study aims to evaluate whether malaria influences hearing in mice.</p> <p>Methods</p> <p>Twenty mice were included in a standardized murine cerebral malaria model. Auditory evoked brainstem responses were assessed before infection and at the peak of the illness.</p> <p>Results</p> <p>A significant hearing impairment could be demonstrated in mice with malaria, especially the cerebral form. The control group did not show any alterations. No therapy was used.</p> <p>Conclusion</p> <p>This suggests that malaria itself leads to a hearing impairment in mice.</p
    corecore